Forces Driving the Morphological Evolution of a Mud-Capped Dredge Pit, Northern Gulf of Mexico

Author:

Wang JiazeORCID,Xu Kehui,Li Chunyan,Obelcz Jeffrey

Abstract

Sandy sediments preserved as paleo-channel fill on the inner shelf, some of which are overlain by modern muds, have been mined for barrier island restoration along the northern Gulf of Mexico. These mined areas have been termed “mud-capped” dredge pits. The processes governing the morphological evolution of the pits are poorly constrained due to limited observational data. Physical oceanographic (e.g., currents and waves) and sedimentary data were collected at Sandy Point dredge pit offshore Plaquemines Parish, Louisiana in summer 2015. Currents outside the pit flowed southward and/or southeastward at speeds of 8–20 cm/s, while currents inside the pit had speeds less than 2 cm/s with no clear dominant direction. Wave heights detected inside the pit were less than 0.4 m. A high turbidity layer with suspended sediment concentration around 4 g/L was observed above the pit floor, and its thickness was ~0.5 m. With observational data as input, three 2–D numerical models were employed to predict pit morphological responses, including pit infilling, margin erosion and slope change. The model results suggest that resuspension events were rare on the seafloor adjacent to the pit under summer fair weather conditions. Modeled pit margin erosion was very limited. With little resuspension of seafloor sediment locally, weak margin erosion and stable pit walls, the dominant process governing pit evolution was infilling sourced by the deposition of suspended sediments from the Mississippi River plume.

Funder

Bureau of Ocean Energy Management

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3