Development and Validation of an Artificial Intelligence Electrocardiogram Recommendation System in the Emergency Department

Author:

Tsai Dung-JangORCID,Tsai Shih-Hung,Chiang Hui-HsunORCID,Lee Chia-Cheng,Chen Sy-JouORCID

Abstract

The machine learning-assisted electrocardiogram (ECG) is increasingly recognized for its unprecedented capabilities in diagnosing and predicting cardiovascular diseases. Identifying the need for ECG examination early in emergency department (ED) triage is key to timely artificial intelligence-assisted analysis. We used machine learning to develop and validate a clinical decision support tool to predict ED triage patients’ need for ECG. Data from 301,658 ED visits from August 2017 to November 2020 in a tertiary hospital were divided into a development cohort, validation cohort, and two test cohorts that included admissions before and during the COVID-19 pandemic. Models were developed using logistic regression, decision tree, random forest, and XGBoost methods. Their areas under the receiver operating characteristic curves (AUCs), positive predictive values (PPVs), and negative predictive values (NPVs) were compared and validated. In the validation cohort, the AUCs were 0.887 for the XGBoost model, 0.885 for the logistic regression model, 0.878 for the random forest model, and 0.845 for the decision tree model. The XGBoost model was selected for subsequent application. In test cohort 1, the AUC was 0.891, with sensitivity of 0.812, specificity of 0.814, PPV of 0.708 and NPV of 0.886. In test cohort 2, the AUC was 0.885, with sensitivity of 0.816, specificity of 0.812, PPV of 0.659, and NPV of 0.908. In the cumulative incidence analysis, patients not receiving an ECG yet positively predicted by the model had significantly higher probability of receiving the examination within 48 h compared with those negatively predicted by the model. A machine learning model based on triage datasets was developed to predict ECG acquisition with high accuracy. The ECG recommendation can effectively predict whether patients presenting at ED triage will require an ECG, prompting subsequent analysis and decision-making in the ED.

Funder

Medical Affairs Bureau Ministry of National Defense, Taiwan

Tri-Service General Hospital

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3