Deep-ADCA: Development and Validation of Deep Learning Model for Automated Diagnosis Code Assignment Using Clinical Notes in Electronic Medical Records

Author:

Masud Jakir Hossain BhuiyanORCID,Shun Chiang,Kuo Chen-Cheng,Islam Md. Mohaimenul,Yeh Chih-Yang,Yang Hsuan-ChiaORCID,Lin Ming-ChinORCID

Abstract

Currently, the International Classification of Diseases (ICD) codes are being used to improve clinical, financial, and administrative performance. Inaccurate ICD coding can lower the quality of care, and delay or prevent reimbursement. However, selecting the appropriate ICD code from a patient’s clinical history is time-consuming and requires expert knowledge. The rapid spread of electronic medical records (EMRs) has generated a large amount of clinical data and provides an opportunity to predict ICD codes using deep learning models. The main objective of this study was to use a deep learning-based natural language processing (NLP) model to accurately predict ICD-10 codes, which could help providers to make better clinical decisions and improve their level of service. We retrospectively collected clinical notes from five outpatient departments (OPD) from one university teaching hospital between January 2016 and December 2016. We applied NLP techniques, including global vectors, word to vectors, and embedding techniques to process the data. The dataset was split into two independent training and testing datasets consisting of 90% and 10% of the entire dataset, respectively. A convolutional neural network (CNN) model was developed, and the performance was measured using the precision, recall, and F-score. A total of 21,953 medical records were collected from 5016 patients. The performance of the CNN model for the five different departments was clinically satisfactory (Precision: 0.50~0.69 and recall: 0.78~0.91). However, the CNN model achieved the best performance for the cardiology department, with a precision of 69%, a recall of 89% and an F-score of 78%. The CNN model for predicting ICD-10 codes provides an opportunity to improve the quality of care. Implementing this model in real-world clinical settings could reduce the manual coding workload, enhance the efficiency of clinical coding, and support physicians in making better clinical decisions.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3