Unraveling Aquatic Quality Controls of a Nearly Undisturbed Mediterranean Island (Samothraki, Greece)

Author:

Skoulikidis Nikolaos T.ORCID,Lampou Anastasia,Laschou Sofia

Abstract

Due to its rough, mountainous relief, Samothraki remains one of the last minimally disturbed islands in the Mediterranean. This paper examines the hydrogeochemical regime of the island’s surface waters as it results from geological, morphological, and hydro(geo)logical controls within a frame of minimally disturbed environmental conditions. Shallow, fractured groundwater aquifers, in combination with steep slopes and predominant weathering resistant rocks, bring about flashy stream regimes with remarkably low solute concentrations. Streams and springs revealed hydrochemical similarities. Contrary to streams chiefly draining sedimentary rocks, streams underlined by granite and ophiolite rocks do not respond hydrochemically to geochemical differences. Using ion proportions instead of concentrations, geochemical fingertips of magmatic stream basins were detected. Atmospheric inputs largely affect stream and spring composition, e.g., by 75% regarding sodium. Only 20% of dissolved oxygen and pH variance was assigned to biological activity, while nutrient levels were consistent with the undisturbed conditions of the island, except nitrate. Small mountainous springs and brooks fed by restricted, fractured groundwater aquifers with perennial flow, despite scarce summer rainfalls, may be fueled by cloud and fog condensation. High night-day stream flow differences, high atmospheric humidity predominately occurring during the night, and low stream water travel times point out toward this phenomenon.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference87 articles.

1. Chemical Characteristics of Rivers;Meybeck,2009

2. Ecological Interactions and Evolution: Forgotten Parts of Biodiversity?

3. Historical Change of Large Alluvial Rivers: Western Europe;Petts,1989

4. Least Disturbed Condition for European Mediterranean rivers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3