Smart Sleep Monitoring: Sparse Sensor-Based Spatiotemporal CNN for Sleep Posture Detection

Author:

Hu Dikun1ORCID,Gao Weidong1ORCID,Ang Kai Keng23ORCID,Hu Mengjiao2ORCID,Chuai Gang1,Huang Rong4

Affiliation:

1. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications (BUPT), No. 10 Xitucheng Road, Haidian District, Beijing 100876, China

2. Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632, Singapore

3. College of Computing and Data Science, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore

4. Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan Wangfujing, Beijing 100730, China

Abstract

Sleep quality is heavily influenced by sleep posture, with research indicating that a supine posture can worsen obstructive sleep apnea (OSA) while lateral postures promote better sleep. For patients confined to beds, regular changes in posture are crucial to prevent the development of ulcers and bedsores. This study presents a novel sparse sensor-based spatiotemporal convolutional neural network (S3CNN) for detecting sleep posture. This S3CNN holistically incorporates a pair of spatial convolution neural networks to capture cardiorespiratory activity maps and a pair of temporal convolution neural networks to capture the heart rate and respiratory rate. Sleep data were collected in actual sleep conditions from 22 subjects using a sparse sensor array. The S3CNN was then trained to capture the spatial pressure distribution from the cardiorespiratory activity and temporal cardiopulmonary variability from the heart and respiratory data. Its performance was evaluated using three rounds of 10 fold cross-validation on the 8583 data samples collected from the subjects. The results yielded 91.96% recall, 92.65% precision, and 93.02% accuracy, which are comparable to the state-of-the-art methods that use significantly more sensors for marginally enhanced accuracy. Hence, the proposed S3CNN shows promise for sleep posture monitoring using sparse sensors, demonstrating potential for a more cost-effective approach.

Funder

Basic and Applied Research Foundation of Guangdong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3