Consensus-Based Sequential Estimation of Process Parameters via Industrial Wireless Sensor Networks

Author:

Lin FeilongORCID,Li Wenbai,Yuan Liyong

Abstract

Process parameter estimation, to a large extent, determines the industrial production quality. However, limited sensors can be deployed in a traditional wired manner, which results in poor process parameter estimation in hostile environments. Industrial wireless sensor networks (IWSNs) are techniques that enrich sampling points by flexible sensor deployment and then purify the target by collaborative signal denoising. In this paper, the process industry scenario is concerned, where the workpiece is transferred on the belt and the parameter estimate is required before entering into the next process stage. To this end, a consensus-based sequential estimation (CSE) framework is proposed which utilizes the co-design of IWSN and parameter state estimation. First, a group-based network deployment strategy, together with a TDMA (Time division multiple access)-based scheduling scheme is provided to track and sample the moving workpiece. Then, by matching to the tailored IWSN, the sequential estimation algorithm, which is based on the consensus-based Kalman estimation, is developed, and the optimal estimator that minimizes the mean-square error (MSE) is derived under the uncertain wireless communications. Finally, a case study on temperature estimation during the hot milling process is provided. The results show that the estimation error can be reduced to less than 3 ∘ C within a limited time period, although the measurement error can be more than 100 ∘ C in existing systems with a single-point temperature sensor.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3