In Situ Digital Image Correlation Observations of Laser Forming

Author:

Fidder Herman,Admiraal Joris P. J.,Ocelík Václav,De Hosson Jeff Th. M.ORCID

Abstract

In this study experimental and modelling methods are used to examine the microstructural and bending responses of laser-formed commercially pure titanium grade 2. The in situ bending angle response is measured for different processing parameters utilizing 3D digital image correlation. The microstructural changes are observed using electron backscatter diffraction. Finite element modelling is used to analyse the heat transfer and temperature field inside the material. It has been proven that the laser bending process is not only controlled by processing parameters such as laser power and laser beam scanning speed, but also by surface absorption. Grain size appears to have no influence on the final bending angle, however, sandblasted samples showed a considerably higher final bending angle. Experimental and simulation results suggest that the laser power has a larger influence on the final bending angle than that of the laser transverse speed. The microstructure of the laser heat-affected zone consists of small refined grains at the top layer followed by large elongated grains. Deformation mechanisms such as slip and twinning were observed in the heat-affected zone, where their distribution depends on particular processing parameters.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3