Abstract
The effect of three important process parameters, namely laser power, scanning speed and laser stand-off distance on the deposit geometry, microstructure and segregation characteristics in direct energy deposited alloy 718 specimens has been studied. Laser power and laser stand-off distance were found to notably affect the width and depth of the deposit, while the scanning speed influenced the deposit height. An increase in specific energy conditions (between 0.5 J/mm2 and 1.0 J/mm2) increased the total area of deposit yielding varied grain morphologies and precipitation behaviors which were comprehensively analyzed. A deposit comprising three distinct zones, namely the top, middle and bottom regions, categorized based on the distinct microstructural features formed on account of variation in local solidification conditions. Nb-rich eutectics preferentially segregated in the top region of the deposit (5.4–9.6% area fraction, Af) which predominantly consisted of an equiaxed grain structure, as compared to the middle (1.5–5.7% Af) and the bottom regions (2.6–4.5% Af), where columnar dendritic morphology was observed. High scan speed was more effective in reducing the area fraction of Nb-rich phases in the top and middle regions of the deposit. The <100> crystallographic direction was observed to be the preferred growth direction of columnar grains while equiaxed grains had a random orientation.
Subject
General Materials Science,Metals and Alloys
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献