Fatigue Reliability Assessment of an Automobile Coil Spring under Random Strain Loads Using Probabilistic Technique

Author:

Manouchehrynia Reza,Abdullah Shahrum,Singh Karam Singh Salvinder

Abstract

This paper presents a mathematical model to estimate strain-life probabilistic modeling based on the fatigue reliability prediction of an automobile coil spring under random strain loads. The proposed technique was determined using a probabilistic method of the Gumbel distribution for strain-life models of automobile suspension systems. Strain signals from different road excitations in experimental tests were measured. The probability density function of the Gumbel distribution was considered to estimate model parameters using maximum likelihood estimation (MLE). The Akaike information criterion (AIC) method was performed to specify which model can estimate the best fit model parameters. Results demonstrated a good agreement between the predicted fatigue lives of the proposed probabilistic model and the measured strain fatigue life models. The root-mean-square errors (RMSE) based on the Coffin–Manson, Morrow, and Smith–Watson–Topper strain-life models were approximately 0.00114, 0.00107, and 0.00509, respectively, indicating a high correlation with the proposed model and experimental data. The results demonstrated that the proposed probabilistic model is effective for the fatigue life prediction of automobile coil springs using strain and stress fatigue life approaches.

Funder

Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3