Texture Hardening Observed in Mg–Zn–Nd Alloy Processed by Equal-Channel Angular Pressing (ECAP)

Author:

Stráská Jitka,Minárik PeterORCID,Šašek Stanislav,Veselý Jozef,Bohlen Jan,Král RobertORCID,Kubásek JiříORCID

Abstract

The addition of Nd significantly improves the mechanical properties of magnesium alloys. However, only limited amounts of Nd or other rare earth (RE) elements should be used due to their high price. In this study, a low-alloyed Mg–1% Zn–1% Nd (ZN11) alloy was designed and processed by hot extrusion and subsequent equal-channel angular pressing (ECAP) in order to achieve a very fine-grained condition with enhanced strength. The microstructure, texture, and mechanical properties were thoroughly studied. The microstructure after 8 passes through ECAP was homogeneous and characterized by an average grain size of 1.5 µm. A large number of tiny secondary phase precipitates were identified as ordered Guinier–Preston (GP) zones. Detailed analysis of the Schmid factors revealed the effect of the texture on deformation mechanisms. ECAP processing more than doubled the achieved yield compression strength (YCS) of the ZN11 alloy. Significant strengthening by ECAP is caused by grain refinement and the formation of ordered Guinier–Preston zones and particles of a secondary γ-phase.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3