Hot Metal Temperature Forecasting at Steel Plant Using Multivariate Adaptive Regression Splines

Author:

Díaz JoséORCID,Fernández Francisco Javier,Prieto María Manuela

Abstract

Steelmaking has been experiencing continuous challenges and advances concerning process methods and control models. Integrated steelmaking begins with the hot metal, a crude liquid iron that is produced in the blast furnace (BF). The hot metal is then pre-treated and transferred to the basic lined oxygen furnace (BOF) for refining, experiencing a non-easily predictable temperature drop along the BF–BOF route. Hot metal temperature forecasting at the BOF is critical for the environment, productivity, and cost. An improved multivariate adaptive regression splines (MARS) model is proposed for hot metal temperature forecasting. Selected process variables and past temperature measurements are used as predictors. A moving window approach for the training dataset is chosen to avoid the need for periodic re-tuning of the model. There is no precedent for the application of MARS techniques to BOF steelmaking and a comparable temperature forecasting model of the BF–BOF interface has not been published yet. The model was trained, tested, and validated using a plant process dataset with 12,195 registers, covering one production year. The mean absolute error of predictions is 11.2 °C, which significantly improves those of previous modelling attempts. Moreover, model training and prediction are fast enough for a reliable on-line process control.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference45 articles.

1. The science and technology of steelmaking—Measurements, models, and manufacturing

2. Iron Making and Steelmaking: Theory and Practice;Ghosh,2008

3. Oxygen Steelmaking Processes;Miller,1998

4. Control of oxygen steelmaking;Williams,1983

5. Blast Furnace Hot Metal Temperature Prediction through Neural Networks-Based Models

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3