Casein Hydrolysate Alleviates Adipose Chronic Inflammation in High Fat-Diet Induced Obese C57BL/6J Mice through MAPK Pathway

Author:

Liu Ling1,Yu Songfeng1,Bu Tingting2ORCID,He Guoqing1,Li Shanshan3,Wu Jianping4ORCID

Affiliation:

1. College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China

2. Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China

3. College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China

4. Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada

Abstract

Obesity-induced adipose chronic inflammation is closely related to the development of insulin resistance and T2DM. Tripeptides l-valyl-l-prolyl-l-proline (VPP) and l-isoleucyl-l-prolyl-L-proline (IPP) derived from bovine casein have been reported to prevent inflammatory changes and mitigate insulin resistance in adipocytes. In this study, we aimed to investigate the influence of casein hydrolysates (CH) containing VPP and IPP on a high fat diet (HFD)-induced obese mice and cytokine TNF-α-induced adipocytes. Our data showed that CH alleviated chronic inflammation both in vivo and in vitro. 4% CH suppressed HFD-induced systemic inflammatory factors, hypertrophic white adipocytes, and macrophage infiltration. More importantly, CH was able to improve adipocyte dysfunction induced by TNF-α by increasing the expression of CCAAT/enhancer binding protein α (C/EBP-α) rather than peroxisome proliferator-activated receptor γ (PPAR-γ). Furthermore, CH also dose-dependently suppressed mitogen-activated protein kinase (MAPK)-c-Jun N-terminal kinase (JNK) phosphorylation and enhanced the phosphorylation of Erk 1/2, but not nuclear factor-kappa B (NF-κB) p65 phosphorylation, in TNF-α-induced 3T3-L1 cells. These results indicated that CH could ameliorate adipose chronic inflammation through the MAPK pathway. Altogether, our findings suggested that 4% CH supplementation for 6 weeks exerted a protective role in preventing obesity-related inflammation and adipose dysfunction.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3