The Crystallinity of Apatite in Contact with Metamict Pyrochlore from the Silver Crater Mine, ON, Canada

Author:

Emproto Christopher,Alvarez Austin,Anderkin Christian,Rakovan John

Abstract

The purpose of this work is to evaluate the long-term effects of radiation on the structure of naturally occurring apatite in the hope of assessing its potential for use as a solid nuclear waste form for actinide sequestration over geologically relevant timescales. When a crystal is exposed to radioactivity from unstable constituent atoms undergoing decay, the crystal’s structure may become damaged. Crystalline materials rendered partially or wholly amorphous in this way are deemed “partially metamict” or “metamict” respectively. Intimate proximity of a non-radioactive mineral to a radioactive one may also cause damage in the former, evident, for example, in pleochroic haloes surrounding zircon inclusions in micas. Radiation damage may be repaired through the process of annealing. Experimental evidence suggests that apatite may anneal during alpha particle bombardment (termed “self-annealing”), which, combined with a low solubility in aqueous fluids and propensity to incorporate actinide elements, makes this mineral a promising phase for nuclear waste storage. Apatite evaluated in this study occurs in a Grenville-aged crustal carbonatite at the Silver Crater Mine in direct contact with U-bearing pyrochlore (var. betafite)—a highly radioactive mineral. Stable isotope analyses of calcite from the carbonatite yield δ18O and δ13C consistent with other similar deposits in the Grenville Province. Although apatite and betafite imaged using cathodoluminescence (CL) show textures indicative of fracture-controlled alteration, Pb isotope analyses of betafite from the Silver Crater Mine reported in previous work are consistent with a model of long term Pb loss from diffusion, suggesting the alteration was not recent. Thus, it is interpreted that these minerals remained juxtaposed with no further metamorphic overprint for ≈1.0 Ga, and therefore provide an ideal opportunity to study the effects of natural, actinide-sourced radiation on the apatite structure over long timescales. Through broad and focused X-ray beam analyses and electron backscatter diffraction (EBSD) mapping, the pyrochlore is shown to be completely metamict—exhibiting no discernible diffraction associated with crystallinity. Meanwhile, apatite evaluated with these methods is confirmed to be highly crystalline with no detectable radiation damage. However, the depth of α-decay damage is not well-understood, with reported depths ranging from tens of microns to just a few nanometers. EBSD, a surface sensitive technique, was therefore used to evaluate the crystallinity of apatite surfaces which had been in direct contact with radioactive pyrochlore, and the entire volume of small apatite crystals whose cores may have received significant radiation doses. The EBSD results demonstrate that apatite remains crystalline, as derived from sharp and correctly-indexed Kikuchi patterns, even on surfaces in direct contact with a highly radioactive source for prolonged periods in natural systems.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3