Abstract
We measured the elastic velocities of a synthetic polycrystalline β-Mg2SiO4 containing 0.73 wt.% H2O to 10 GPa and 600 K using ultrasonic interferometry combined with synchrotron X-radiation. Third-order Eulerian finite strain analysis of the high P and T data set yielded Kso = 161.5(2) GPa, Go = 101.6(1) GPa, and (∂Ks/∂P)T = 4.84(4), (∂G/∂P)T = 1.68(2) indistinguishable from Kso = 161.1(3) GPa, Go = 101.4(1) GPa, and (∂Ks/∂P)T = 4.93(4), (∂G/∂P)T = 1.73(2) from the linear fit. The hydration of the wadsleyite by 0.73 wt.% decreases Ks and G moduli by 5.3% and 8.6%, respectively, but no measurable effect was noted for (∂Ks/∂P)T and (∂G/∂P)T. The temperature derivatives of the Ks and G moduli from the finite strain analysis (∂KS/∂T)P = −0.013(2) GPaK−1, (∂G/∂T)P = −0.015(0.4) GPaK−1, and the linear fit (∂KS/∂T)P = −0.015(1) GPaK−1, (∂G/∂T)P = −0.016(1) GPaK−1 are in agreement, and both data sets indicating the |(∂G/∂T)P| to be greater than |(∂KS/∂T)P|. Calculations yield ∆Vp(α-β) = 9.88% and ∆VS(α-β) = 8.70% for the hydrous β-Mg2SiO4 and hydrous α-Mg2SiO4, implying 46–52% olivine volume content in the Earth’s mantle to satisfy the seismic velocity contrast ∆Vs = ∆VP = 4.6% at the 410 km depth.
Funder
National Science Foundation
Subject
Geology,Geotechnical Engineering and Engineering Geology
Reference61 articles.
1. Hydrous modified spinel, Mg1.75SiH0.5O4: A new water reservoir in the mantle transition region
2. Solubility of water in the α, β and γ phases of (Mg,Fe) 2 SiO 4
3. Mg-vacant structural modules and dilution of the symmetry of hydrous wadsleyite, β-Mg2−XSiH2X with 0.00 ≤ X ≤ 0.25;Kudoh;Phys. Chem. Miner.,1999
4. β-Mg2SiO4: A potential host for water in the mantle?;Smyth;Am. Mineral.,1987
5. Location and quantification of hydroxyl in wadsleyite: New insights
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献