Computational Modeling and Prediction on Viscosity of Slags by Big Data Mining

Author:

Huang AoORCID,Huo Yanzhu,Yang JuanORCID,Gu Huazhi,Li GuangqiangORCID

Abstract

The viscosity of slag is a key factor affecting metallurgical efficiency and recycling, such as metal-slag reaction and separation, as well as slag wool processing. In order to comprehensively clarify the variation of the slag viscosity, various data mining methods have been employed to predict the viscosity of the slag. In this study, a more advanced dual-stage predictive modeling approach is proposed in order to accurately analyze and predict the viscosity of slag. Compared with the traditional single data mining approach, the proposed method performs better with a higher recall rate and low misclassification rate. The simulation results show that temperature, SiO2, Al2O3, P2O5, and CaO have greater influences on the slag’s viscosity. The critical temperature for onset of the important influence of slag composition is 980 °C. Furthermore, it is found that SiO2 and P2O5 have positive correlations with slag’s viscosity, while temperature, Al2O3, and CaO have negative correlations. A two-equation model of six-degree polynomial combined with Arrhenius formula is also established for the purpose of providing theoretical guidance for industrial application and reutilization of slag.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference42 articles.

1. Effect of ingredient on viscosity of CaO-MgO-SiO2-Al2O3 quaternary refining slag series;Zhang;Spec. Steel,2013

2. Toward CFD Modeling of Slag Entrainment in Gas Stirred Ladles

3. Fundamental and industrial investigation on preparation of high acidity coefficient steel slag derived slag wool

4. Measure and model calculation of metallurgical slag viscosity;Wang;Hot Work. Technol.,2014

5. Fundamental Research on the Structure and Viscosity of Molten CaO-SiO2-P2O5-FeO Slag;Jiang,2015

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3