Effect of Waste Cooking Oil-Based Composite Materials on Radish Growth and Biochemical Responses

Author:

Staroń Anita1ORCID,Ciuruś Joanna2,Kijania-Kontak Magda3ORCID

Affiliation:

1. Department of Engineering and Chemical Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland

2. Research Center for Cultivar Testing, A5 No. 9 St., 32-086 Węgrzce, Poland

3. Department of Civil Engineering, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland

Abstract

Waste cooking oil poses a serious threat to human health and the environment, both in households and in larger communities. One of the applications of waste cooking oil is composite materials called vegeblocks, which can be used for construction purposes. These composites are formed by the process of polymerisation, esterification and polyesterification. The resulting materials exhibit mechanical strength in line with the requirements for paving blocks. Composite materials that have been annealed for a minimum of 20 h at 200 °C or higher have the highest tensile strength (above 5 MPa). In contrast, composites with the highest flexural strength were obtained after processing at 210 °C for 16 h. The Saxa 2 variety showed the greatest inhibition of storage root growth (almost 43% compared to the control sample), as well as stimulation of root and leaf blade growth (by a maximum of 61.5% and 53.5%, respectively, compared to the control sample). The composite obtained from the maximum process parameters resulted in significant growth of both the root and the green part of both radish varieties by up to 35%. The study showed that the presence of vegeblocks in the plants causes stress conditions, resulting in increased peroxidase content compared to the control sample. The presence of the oil composite in the soil did not increase the amount of catalase in the radish, and even a reduction was observed compared to the control sample.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3