Effect of Aging Temperature on the Microstructure and Mechanical Properties of a Novel β Titanium Alloy

Author:

Xiang Wei12,Yuan Wuhua1,Deng Hao2,Luo Hengjun12ORCID,Chen Longqing3ORCID,Yin Weidong2

Affiliation:

1. College of Materials Science and Engineering, Hunan University, Changsha 410082, China

2. China National Erzhong Group Deyang Wanhang Die Forging Co., Ltd., Deyang 618013, China

3. Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China

Abstract

High-strength metastable β titanium alloys are promising structural materials to be used in aviation industries. In order to achieve a high strength level, solid solution treatment within β region and subsequent low-temperature aging are usually necessary to obtain fine α precipitates. The selection of the aging temperature is considered critical to the mechanical performance of metastable β titanium alloys. In this work, we investigated the effect of aging temperature on the microscopic structure and mechanical properties of a novel type of titanium alloy TB18 (Ti-4.5Al-5Mo-5V-6Cr-1Nb). A series of aging treatments were conducted on TB18 specimens at 510 °C, 520 °C, 530 °C, and 540 °C after the solid solution treatment at 870 °C. On the basis of the systematic results of scanning electron microscope and transmission electron microscope, the behavior of the α phases affected by the varied aging temperatures were studied. As the aging temperature rose, the grain width of the α phase increased from 60 nm (510 °C) to 140 nm (540 °C). For the TB18 samples aged at 510 °C and 540 °C, the tensile strength/yield strength/impact toughness values were 1365 ± 3 MPa/1260 ± 0.9 MPa/26.5 ± 1.2 J/cm2 and 1240 ± 0.9 MPa/1138 ± 0.8 MPa/36.2 ± 1.3 J/cm2, respectively. As a result, the tensile performance and the grain width of the α phase agreed well with the Hall–Petch relationship. This work offers valuable support for both theoretical analyses and the heat treatment strategies on the novel TB18 titanium alloy.

Funder

Department of Science and Technology of Sichuan Province

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3