Influence of Corrosion on the Bond–Slip Behaviour between Corroded Bars and Concrete

Author:

Zhao Chenxu1,Ying Zongquan234,Du Chengbin1ORCID,Yang Shuai234,Liu Hansheng1

Affiliation:

1. College of Mechanics and Materials, Hohai University, Nanjing 210098, China

2. CCCC Fourth Harbour Engineering Institute Co., Ltd., Guangzhou 510230, China

3. Hydraulic Structure Durability Technology Key Laboratory of Transportation Industry, Guangzhou 510230, China

4. Guangdong Provincial Laboratory of Southern Ocean Science and Engineering (Zhuhai), Zhuhai 519082, China

Abstract

Pull-out tests were conducted to investigate the effects of corrosion of both the longitudinal bars and stirrups on the bond slip behaviour of reinforced concrete specimens. The main experimental variables include concrete strength (26.7 MPa, 37.7 MPa and 45.2 MPa) and expected corrosion loss (0%, 4%, 8% and 12%), with a total of 63 specimens fabricated. The results show that the relative bonding strength of specimens under different concrete strengths gradually decreases with increasing corrosion loss, but the higher the concrete strength is, the faster its degradation rate. The influence of stirrup corrosion on the peak slip can be ignored, but it will further aggravate the degradation of the bonding strength of the specimens. This reduction in bonding strength is linearly related to the stirrup corrosion loss. Based on the experimental results of this work and the achievements of other scholars, a modified relative bonding strength degradation model and a bond–slipbond–slip constitutive model of corroded reinforced concrete are presented by accounting for the influence coefficient of concrete strength. The results show that the constitutive model is in good agreement with the relevant experimental results.

Funder

Key Laboratory of Durability Technology for Hydraulic Structures of the Ministry of Transport

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3