Evaluation of Hard and Soft Tissue Responses to Four Different Generation Bioresorbable Materials-Poly-l-Lactic Acid (PLLA), Poly-l-Lactic Acid/Polyglycolic Acid (PLLA/PGA), Uncalcined/Unsintered Hydroxyapatite/Poly-l-Lactic Acid (u-HA/PLLA) and Uncalcined/Unsintered Hydroxyapatite/Poly-l-Lactic Acid/Polyglycolic Acid (u-HA/PLLA/PGA) in Maxillofacial Surgery: An In-Vivo Animal Study

Author:

Ayasaka Kentaro1,Ramanathan Mrunalini1,Huy Ngo Xuan2,Shijirbold Ankhtsetseg1,Okui Tatsuo1,Tatsumi Hiroto1,Kotani Tatsuhito1,Shimamura Yukiho1,Morioka Reon1,Kanno Takahiro1

Affiliation:

1. Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo 693-8501, Shimane, Japan

2. Department of Maxillofacial Surgery, Thong Nhat Hospital, Ho Chi Minh City 700000, Vietnam

Abstract

Bone stabilization using osteosynthesis devices is essential in maxillofacial surgery. Owing to numerous disadvantages, bioresorbable materials are preferred over titanium for osteofixation in certain procedures. The biomaterials used for osteosynthesis in maxillofacial surgery have been subdivided into four generations. No study has compared the tissue responses generated by four generations of biomaterials and the feasibility of using these biomaterials in different maxillofacial surgeries. We conducted an in vivo animal study to evaluate host tissue response to four generations of implanted biomaterial sheets, namely, PLLA, PLLA/PGA, u-HA/PLLA, and u-HA/PLLA/PGA. New bone volume and pertinent biomarkers for bone regeneration, such as Runx2, osteocalcin (OCN), and the inflammatory marker CD68, were analyzed, and the expression of each biomarker was correlated with soft tissues outside the biomaterial and toward the host bone at the end of week 2 and week 10. The use of first-generation biomaterials for maxillofacial osteosynthesis is not advantageous over the use of other updated biomaterials. Second-generation biomaterials degrade faster and can be potentially used in non-stress regions, such as the midface. Third and fourth-generation biomaterials possess bioactive/osteoconductivity improved strength. Application of third-generation biomaterials can be considered panfacially. Fourth-generation biomaterials can be worth considering applying at midface due to the shorter degradation period.

Funder

Grant-in-Aid for Scientific Research from JSPS KAKENHI

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3