State-of-the-Art Diffusion Studies in the High Entropy Alloys

Author:

Dąbrowa Juliusz,Danielewski MarekORCID

Abstract

The development of the high entropy alloys (HEAs) is amongst the most important topics in the field of materials science during the last two decades. The concept of multicomponent, near-equimolar systems has been already applied to the number of other systems, including oxides, carbides, diborides, silicides, and it can be expected that other groups of materials will follow. One of the main driving forces for the development of HEAs is the so-called “four core effects”: high entropy effects, severe lattice distortion, cocktail effect, and sluggish diffusion effect. Their existence and extent has been a subject of heated discussion. Probably the least studied of them is the sluggish diffusion effect, which is of the, especially, high importance from the point of view of the most possible applications of HEAs—as high-temperature materials. Its alleged existence carries a promise of obtaining materials with superior mechanical properties, higher creep resistance, and less susceptibility to high-temperature corrosion. In the current review, the state-of-the-art of diffusion studies in HEAs was presented, as well as the resulting conclusions concerning the existence of the sluggish diffusion effect. Based on the literature analysis, it can be stated that there is no experimental evidence, which would support the existence of the sluggish diffusion in HEAs on the level of tracer and self-diffusivities. Nevertheless, it can be pointed out that our current state of knowledge on the diffusion in HEAs is still far from complete; therefore, further directions of studies are proposed.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3