Effect of Heat Treatment on Microstructure and Mechanical Properties of Mg-5Zn-1Mn Alloy Tube

Author:

Li Lianhui,Cao Hongshuai,Qi FugangORCID,Wang Qing,Zhao Nie,Liu Yingdu,Ye Xue,Ouyang Xiaoping

Abstract

The effects of heat treatment on the microstructure, mechanical properties and electrochemical property of the as-extruded Mg-5Zn-1Mn (ZM51) alloy tube are investigated by optical microstructure (OM), X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electrical microscope (TEM), uniaxial tensile test, and electrochemical test. The results show that the as-cast structure is a typical dendritic structure, mainly composed of α-Mg and Mg7Zn3 eutectic compounds. After homogenization, most of Mg7Zn3 eutectic phases are dissolved in the Mg matrix. During the extrusion process, the ZM51 alloy has undergone complete dynamic recrystallization and has a good elongation, reaching 21.4%. T6, especially T4 + double aging treatment, can significantly improve the mechanical properties of the as-extruded tube. The microstructure reveals that the precipitation strengthening of the finely dispersed MgZn2 precipitates is the main reason for the strength increase. The fracture micromorphology of the as-extruded tube is mainly composed of dimples and cleavage facets, which is a typical ductile fracture. The fracture mode of the as-aged alloy tubes belongs to cleavage fracture. In addition, the electrochemical test results show the solution-treated ZM51 alloy tube has the best corrosion resistance. The improvement of corrosion resistance is mainly due to the microstructure uniformity and low phase volume fraction.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3