Application of the Progressive Forming Method in Simulation and Experimental Study of Rectangular Fins in a Heat Exchanger

Author:

Jin Chul KyuORCID

Abstract

A progressive forming method is applied where stamping is continuously executed to produce the rectangular fins of the plate fin heat exchanger. This process produced the fins one-by-one instead of by bundles. In order to produce a fin having a depth of more than 6.0 mm, the forming load and effective stress according to the size of the edge radii of punch and die are predicted by forming simulation. Furthermore, the process of forming the second, as well as the third, fins is predicted. As the edge radii of the die and those of the punch became smaller, the effective stresses generated during deformation became smaller. The forming load during deformation also became smaller. The sizes of the edge radii of die and punch were set to 0.5 mm and 0.2 mm, respectively. When the second fin was formed, overforming occurred at the ribs. The punch was therefore modified so that the rib could be compressed at the same time the fin was formed. With the designed process, the inner fins close to the target size could be manufactured. The resulting fins had right-angled ribs, although the fin width was a slightly opened isosceles trapezoid due to the spring-back.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference18 articles.

1. Classification of Heat Exchanger;Shah,2003

2. Classification of Heat Exchanger;Thulukkanam,2013

3. Exergy based optimization and experimental evaluation of plate fin heat exchanger;Rajvir;Appl. Therm. Eng.,2016

4. Development of structural design procedure of plate-fin heat exchanger for HTGR;Yorikata;Nucl. Eng. Des.,2013

5. Fabrication and design aspects of high-temperature compact diffusion bonded heat exchangers;Sai;Nucl. Eng. Des.,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3