Abstract
A saturated iron-core superconducting fault current limiter (SI-SFCL) can significantly limit the magnitude of the fault current and reduce the stress on circuit breakers in direct current (DC) power systems. The SI-SFCL consists of three main parts: one magnetic iron-core, one normal conductive primary coil (CPC), and one superconducting secondary coil (SSC). This paper deals with the design options for the coil system of the SI-SFCL and confirms their operating characteristics through a physical experiment. The electromagnetic characteristics and operational features of the SI-SFCL was analyzed by a 3D finite element method simulation model. The design of the SSC was based on shape, wire types, required fault current limit and protection aspects. In the CPC, the bobbin was designed based on material selection, cost, structural design, and the effects of the SI-SFCL on the fault current limit. Based on these simulation results, a laboratory-scale SI-SFCL was developed, specifically fabricated to operate on a 500 V, 50 A direct current (DC) power system. In the experiment, the operating characteristics of each coil were analyzed, and the fault current limit of the SI-SFCL according to the operating currents of the SSC and bobbin design of the CPC were confirmed. Finally, the cost analysis of the SI-SFCL with the proposed design options of the coil system was implemented. The results obtained through this study can be effectively used to large-scale SI-SFCL development studies for high-voltage direct current (HVDC) power systems.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献