A Parametric Study of Wave Energy Converter Layouts in Real Wave Models

Author:

Amini ErfanORCID,Golbaz Danial,Amini FereidounORCID,Majidi Nezhad Meysam,Neshat Mehdi,Astiaso Garcia DavideORCID

Abstract

Ocean wave energy is a broadly accessible renewable energy source; however, it is not fully developed. Further studies on wave energy converter (WEC) technologies are required in order to achieve more commercial developments. In this study, four CETO6 spherical WEC arrangements have been investigated, in which a fully submerged spherical converter is modelled. The numerical model is applied using linear potential theory, frequency-domain analysis, and irregular wave scenario. We investigate a parametric study of the distance influence between WECs and the effect of rotation regarding significant wave direction in each arrangement compared to the pre-defined layout. Moreover, we perform a numerical landscape analysis using a grid search technique to validate the best-found power output of the layout in real wave models of four locations on the southern Australian coast. The results specify the prominent role of the distance between WECs, along with the relative angle of the layout to dominant wave direction, in harnessing more power from the waves. Furthermore, it is observed that a rise in the number of WECs contributed to an increase in the optimum distance between converters. Consequently, the maximum exploited power from each buoy array has been found, indicating the optimum values of the distance between buoys in different real wave scenarios and the relative angle of the designed layout with respect to the dominant in-site wave direction.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3