Simulation and Measurement of Energetic Performance in Decentralized Regenerative Ventilation Systems

Author:

Carbonare Nicolas,Fugmann HannesORCID,Asadov Nasir,Pflug Thibault,Schnabel Lena,Bongs Constanze

Abstract

Decentralized regenerative mechanical ventilation systems have acquired relevance in recent years for the retrofit of residential buildings. While manufacturers report heat recovery efficiencies over 90%, research has shown that the efficiencies often vary between 60% and 80%. In order to better understand this mismatch, a test facility is designed and constructed for the experimental characterization and validation of regenerative heat exchanger simulation models. A ceramic honeycomb heat exchanger, typical for decentralized regenerative ventilation devices, is measured in this test facility. The experimental data are used to validate two modeling approaches: a one-dimensional model in Modelica and a computational fluid dynamics (CFD) model built in COMSOL Multiphysics®. The results show an overall acceptable thermal performance of both models, the 1D model having a much lower simulation time and, thus, being suitable for integration in building performance simulations. A test case is designed, where the importance of an appropriate thermal and hydraulic modeling of decentralized ventilation systems is investigated. Therefore, the device is integrated into a multizone building simulation case. The results show that including component-based heat recovery and fan modeling leads to 30% higher heat losses due to ventilation and 10% more fan energy consumption than when assuming constant air exchange rates with ideal heat recovery. These findings contribute to a better understanding of the behavior of a growing technology such as decentralized ventilation and confirm the need for further research on these systems.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference47 articles.

1. Comprehensive Study of Building Energy Renovation Activities and the Uptake of Nearly Zero-Energy Buildings in the EU,2019

2. Ventilation, indoor air quality, and health in homes undergoing weatherization

3. IC Market Tracking: Kontrollierte Wohnraumlüftung in Europa 2018,2018

4. Dezentrales Wohnungslüftungsgerät Vitovent 100-D mit Wärmerückgewinnunghttps://www.viessmann.de/de/wohngebaeude/wohnungslueftung/dezentrale-wohnungslueftung/vitovent-100-d.html

5. Raumweise Lüftungsgeräte in der Wohnungslüftung—Pro und contra;Angsten;GI Wiss.,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3