Abstract
Decentralized regenerative mechanical ventilation systems have acquired relevance in recent years for the retrofit of residential buildings. While manufacturers report heat recovery efficiencies over 90%, research has shown that the efficiencies often vary between 60% and 80%. In order to better understand this mismatch, a test facility is designed and constructed for the experimental characterization and validation of regenerative heat exchanger simulation models. A ceramic honeycomb heat exchanger, typical for decentralized regenerative ventilation devices, is measured in this test facility. The experimental data are used to validate two modeling approaches: a one-dimensional model in Modelica and a computational fluid dynamics (CFD) model built in COMSOL Multiphysics®. The results show an overall acceptable thermal performance of both models, the 1D model having a much lower simulation time and, thus, being suitable for integration in building performance simulations. A test case is designed, where the importance of an appropriate thermal and hydraulic modeling of decentralized ventilation systems is investigated. Therefore, the device is integrated into a multizone building simulation case. The results show that including component-based heat recovery and fan modeling leads to 30% higher heat losses due to ventilation and 10% more fan energy consumption than when assuming constant air exchange rates with ideal heat recovery. These findings contribute to a better understanding of the behavior of a growing technology such as decentralized ventilation and confirm the need for further research on these systems.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference47 articles.
1. Comprehensive Study of Building Energy Renovation Activities and the Uptake of Nearly Zero-Energy Buildings in the EU,2019
2. Ventilation, indoor air quality, and health in homes undergoing weatherization
3. IC Market Tracking: Kontrollierte Wohnraumlüftung in Europa 2018,2018
4. Dezentrales Wohnungslüftungsgerät Vitovent 100-D mit Wärmerückgewinnunghttps://www.viessmann.de/de/wohngebaeude/wohnungslueftung/dezentrale-wohnungslueftung/vitovent-100-d.html
5. Raumweise Lüftungsgeräte in der Wohnungslüftung—Pro und contra;Angsten;GI Wiss.,2017
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献