Heat Transfer Analysis of Timber Windows with Different Wood Species and Anatomical Direction

Author:

Ahn Namhyuck,Park Sanghoon

Abstract

When assessing the hygrothermal performance of timber windows, it is important to apply the unique thermal conductivity of wood by each wood species as well as an anatomical direction within the same material as they affect the performance and long-term durability of products. A series of heat transfer analyses of window frames using THERM and WINDOW along with measurements on the thermal conductivity of five hardwoods using laser flash apparatus (LFA) was performed to compare and evaluate heat transmittance (U-value) and condensation resistance (CR) of three types of timber and hybrid timber windows. For each window type, 6.1 to 10.3% of the maximum difference in the heat transmittance among cases was calculated. Besides, a linear correlation was found between the U-value and the CR for most cases; thus, the selection of wood species and anatomical direction would improve the hygrothermal performance of timber windows overall. The results also indicated that there were some cases where the overall CR of windows did not improve because the U-value of the glazing system was not sufficiently low.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference33 articles.

1. Window and Door Market Trends & Opportunities. In Proceedings of the Window Door Manufacturers Association 2018 Technical & Manufacturing Conference, Minneapolis, MN, USA, 19–21 June 2018https://www.homeinnovation.com/-/media/Files/Market_Research/WDMA-Technical-Manufacturing-PPT-Home-Innovation.pdf

2. Jeld-Wen 2018 Annual Reporthttps://investors.jeld-wen.com/financials/annual-reports/default.aspx

3. Window of Opportunityhttps://www.wwf.org.uk/sites/default/files/2017-06/windows_0305.pdf

4. Sustainability analysis of window frames

5. Moisture Relations and Physical Properties of Wood;Glass,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3