Stall Mode Transformation in the Wide Vaneless Diffuser of Centrifugal Compressors

Author:

Heng YaguangORCID,Hu BoORCID,Jiang QifengORCID,Wang Zhengwei,Liu Xiaobing

Abstract

A review on the rotating stall in the vaneless diffuser of centrifugal compressors is presented showing that different stall modes characterized by different numbers of cells can be detected within the diffuser even if the operating condition remains unchanged. The interaction between the inlet perturbation and the stall cells near the diffuser outlet is supposed to be the trigger of the stall mode transformation. In order to determine if the inlet perturbation will interact with the downstream stall cells, a characteristic time analysis is proposed to estimate the characteristic time of the perturbation in radial and tangential directions. An additional theoretical model which focused on the development of the vaneless diffuser rotating stall is presented to determine the propagation velocity of the cells. The comparison between the characteristic time in two directions shows that one stall mode is able to evolve into another stall mode if a critical condition is met, and the stall mode transformation is more likely to start from a mode with a higher number of cells and is more likely to occur in the diffuser with a large radius ratio. Experimental results are also employed to validate the proposed critical condition, and good agreements are obtained.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3