A Hybrid Optimization Approach for Power Loss Reduction and DG Penetration Level Increment in Electrical Distribution Network

Author:

Beza Teketay MuluORCID,Huang Yen-ChihORCID,Kuo Cheng-ChienORCID

Abstract

The electrical distribution system has experienced a number of important changes due to the integration of distributed and renewable energy resources. Optimal integration of distributed generators (DGs) and distribution network reconfiguration (DNR) of the radial network have significant impacts on the power system. The main aim of this study is to optimize the power loss reduction and DG penetration level increment while keeping the voltage profile improvements with in the permissible limit. To do so, a hybrid of analytical approach and particle swarm optimization (PSO) are proposed. The proposed approach was tested on 33-bus and 69-bus distribution networks, and significant improvements in power loss reduction, DG penetration increment, and voltage profile were achieved. Compared with the base case scenario, power loss was reduced by 89.76% and the DG penetration level was increased by 81.59% in the 69-bus test system. Similarly, a power loss reduction of 82.13% and DG penetration level increment of 80.55% was attained for the 33-bus test system. The simulation results obtained are compared with other methods published in the literature.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Voltage Stability and DG Penetration in Smart Grids Through a Modified Genetic Algorithm Approach for Optimal Reactive Power Planning;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

2. Research on Graph Clustering Based Line Loss Prediction in Low-Voltage Distribution Network;2023 2nd Asia Power and Electrical Technology Conference (APET);2023-12-28

3. Enhancement of Photovoltaic Hosting Capacity in Distribution Networks through Genetic Algorithm;2023 2nd International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI);2023-12-27

4. Optimal Allocation of DG Units in Radial Distribution Systems;2023 8th International Conference on Mathematics and Computers in Sciences and Industry (MCSI);2023-10-14

5. Robust dynamic and algebraic state estimation for microgrids: A generalized approach;IET Renewable Power Generation;2023-09-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3