Abstract
In the context of smart grids, Distribution Systems State Estimation (DSSE) is notoriously problematic because of the scarcity of available measurement points and the lack of real-time information on loads. The scarcity of measurement data influences on the effectiveness and applicability of dynamic estimators like the Kalman filters. However, if an Extended Kalman Filter (EKF) resulting from the linearization of the power flow equations is complemented by an ancillary prior least-squares estimation of the weekly active and reactive power injection variations at all buses, significant performance improvements can be achieved. Extensive simulation results obtained assuming to deploy an increasing number of next-generation smart meters and Phasor Measurement Units (PMUs) show that not only the proposed approach is generally more accurate and precise than the classic Weighted Least Squares (WLS) estimator (chosen as a benchmark algorithm), but it is also less sensitive to both the number and the metrological features of the PMUs. Thus, low-uncertainty state estimates can be obtained even though fewer and cheaper measurement devices are used.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献