Affiliation:
1. Computer Science and Director Academic Program, College of Innovation and Technology, University of Michigan-Flint, Flint, MI 48502, USA
Abstract
This paper presents the cloud vendor lock-in prediction framework (CVL), which aims to address the challenges that arise from vendor lock-in in cloud computing. The framework provides a systematic approach to evaluate the extent of dependency between service providers and consumers and offers predictive risk analysis and detailed cost assessments. At the heart of the CVL framework is the Dependency Module, which enables service consumers to input weighted factors that are critical to their reliance on cloud service providers. These factors include service costs, data transfer expenses, security features, compliance adherence, scalability, and technical integrations. The research delves into the critical factors that are necessary for dependency calculation and cost analysis, providing insights into determining dependency levels and associated financial implications. Experimental results showcase dependency levels among service providers and consumers, highlighting the framework’s utility in guiding strategic decision-making processes. The CVL is a powerful tool that empowers service consumers to proactively navigate the complexities of cloud vendor lock-in. By offering valuable insights into dependency levels and financial implications, the CVL aids in risk mitigation and facilitates informed decision-making.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献