Local (Co)homology and Čech (Co)complexes with Respect to a Pair of Ideals

Author:

Zhang Pinger1ORCID

Affiliation:

1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China

Abstract

Let I and J be two ideals of a commutative ring R. We introduce the concepts of the Cˇech complex and Cˇech cocomplex with respect to (I,J) and investigate their homological properties. In addition, we show that local cohomology and local homology with respect to (I,J) are expressed by the above complexes. Moreover, we provide a proof for the Matlis–Greenless–May equivalence with respect to (I,J), which is an equivalence between the category of derived (I,J)-torsion complexes and the category of derived (I,J)-completion complexes. As an application, we use local cohomology and the Cˇech complex with respect to (I,J) to prove Grothendieck’s local duality theorem for unbounded complexes.

Publisher

MDPI AG

Reference26 articles.

1. Local homology and cohomology on schemes;Lipman;Ann. Sci. École Norm. Sup.,1997

2. Brodmann, M.P., and Sharp, R.Y. (1998). Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge University Press. Cambridge Studies in Advanced Mathematics.

3. Grothendieck, A. (1967). Local Cohomology, Springer. Lecture Notes in Math.

4. Problems on local cohomology;Eisenbud;Free Resolutions in Commutative Algebra and Algebraic Geometry, Sundance,1992

5. On the vanishing of local cohomology modules;Huneke;Inv. Math.,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3