An EM/MCMC Markov-Switching GARCH Behavioral Algorithm for Random-Length Lumber Futures Trading

Author:

De la Torre-Torres Oscar V.1ORCID,Álvarez-García José2ORCID,del Río-Rama María de la Cruz3ORCID

Affiliation:

1. Facultad de Contaduría y Ciencias Administrativas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58000, Mexico

2. Departamento de Economía Financiera y Contabilidad, Instituto Universitario de Investigación para el Desarrollo Territorial Sostenible (INTERRA), Universidad de Extremadura, 10071 Cáceres, Spain

3. Business Management and Marketing Department, Faculty of Business Sciences and Tourism, University of Vigo, 32004 Ourense, Spain

Abstract

This paper tests using two-regime Markov-switching models with asymmetric, time-varying exponential generalized autoregressive conditional heteroskedasticity (MS-EGARCH) variances in random-length lumber futures trading. By assuming a two-regime context (a low s=1 and high s=2 volatility), a trading algorithm was simulated with the following trading rule: invest in lumber futures if the probability of being in the high-volatility regime s=2 is lower or equal to 50%, or invest in the 3-month U.S. Treasury bills (TBills) otherwise. The rationale tested in this paper was that using a two-regime Markov-switching (MS) algorithm leads to an overperformance against a buy-and-hold strategy in lumber futures. To extend the current literature in MS trading algorithms, two location parameter scenarios were simulated. The first uses an unconditional mean or expected value (no factors), and the second incorporates market and behavioral factors. With weekly simulations form 2 January 1994 to 28 July 2023, the results suggest that using MS-EGARCH models in a no-factors scenario is appropriate for active lumber futures trading with an accumulated return of 158.33%. Also, the results suggest that it is not useful to add market and behavioral factors in the MS-GARCH estimation because it leads to a lower performance.

Funder

Consejería de Economía, Ciencia y Agenda Digital de la Junta de Extremadura and by the European Regional Development Fund of the European Union

Coordinación de la Investigación Científica at Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México

Publisher

MDPI AG

Reference66 articles.

1. A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle;Hamilton;Econometrica,1989

2. Autoregressive Conditional Heteroskedasticity and Changes in Regime;Hamilton;J. Econom.,1994

3. A New Approach to Markov-Switching GARCH Models;Haas;J. Financ. Econom.,2004

4. Mixed Normal Conditional Heteroskedasticity;Haas;J. Financ. Econom.,2004

5. A Multivariate Regime-Switching GARCH Model with an Application to Global Stock Market and Real Estate Equity Returns;Haas;Stud. Nonlinear Dyn. Econom.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3