On Bicomplex (p,q)-Fibonacci Quaternions

Author:

Çelemoğlu Çağla1ORCID

Affiliation:

1. Department of Mathematics, Faculty of Science, Ondokuz Mayıs University, Samsun 55270, Turkey

Abstract

Here, we describe the bicomplex p,q-Fibonacci numbers and the bicomplex p,q-Fibonacci quaternions based on these numbers to show that bicomplex numbers are not defined the same as bicomplex quaternions. Then, we give some of their equations, including the Binet formula, generating function, Catalan, Cassini, and d’Ocagne’s identities, and summation formulas for both. We also create a matrix for bicomplex p,q-Fibonacci quaternions, and we obtain the determinant of a special matrix that gives the terms of that quaternion. With this study, we get a general form of the second-order bicomplex number sequences and the second-order bicomplex quaternions. In addition, we show that these two concepts, defined as the same in many studies, are different.

Publisher

MDPI AG

Reference25 articles.

1. Koshy, T. (2001). Fibonacci and Lucas Numbers with Applications, John Wiley & Sons. A Wiley Inter science publication.

2. Some properties of (p,q)-Fibonacci numbers;Suvarnamani;Prog. Appl. Sci. Technol.,2015

3. Hamilton, W.R. (1866). Elements of Quaternions, Longmans.

4. On (p,q)-Fibonacci quaternions and their Binet formulas, generating functions and certain binomial sums;Adv. Appl. Clifford Algebras,2017

5. Complex Fibonacci Numbers and Fibonacci Quaternions;Horadam;Am. Math. Mon.,1963

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3