A Comprehensive Analysis of MSE in Estimating Conditional Hazard Functions: A Local Linear, Single Index Approach for MAR Scenarios

Author:

Belguerna Abderrahmane1ORCID,Daoudi Hamza2,Abdelhak Khadidja1,Mechab Boubaker3,Chikr Elmezouar Zouaoui4ORCID,Alshahrani Fatimah5ORCID

Affiliation:

1. Department of Mathematics, Sciences Institute, S.A University Center, P.O. Box 66, Naama 45000, Algeria

2. Department of Electrical Engineering, College of Technology, Tahri Mohamed University, Al-Qanadisa Road, P.O. Box 417, Bechar 08000, Algeria

3. Laboratory of Statistics and Stochastic Processes, University of Djillali Liabes, P.O. Box 89, Sidi Bel Abbes 22000, Algeria

4. Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia

5. Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

In unveiling the non-parametric estimation of the conditional hazard function through the local linear method, our study yields key insights into the method’s behavior. We present rigorous analyses demonstrating the mean square convergence of the estimator, subject to specific conditions, within the realm of independent observations with missing data. Furthermore, our contributions extend to the derivation of expressions detailing both bias and variance of the estimator. Emphasizing the practical implications, we underscore the applicability of two distinct models discussed in this paper for single index estimation scenarios. These findings not only enhance our understanding of survival analysis methodologies but also provide practitioners with valuable tools for navigating the complexities of missing data in the estimation of conditional hazard functions. Ultimately, our results affirm the robustness of the local linear method in non-parametrically estimating the conditional hazard function, offering a nuanced perspective on its performance in the challenging context of independent observations with missing data.

Funder

Princess Nourah bint Abdulrahman University

King Khalid University

Publisher

MDPI AG

Reference32 articles.

1. Strong uniform consistency rates and asymptotic normality of conditional density estimator in the single functional index modeling for time series data;Attaoui;Adv. Stat. Anal.,2014

2. Local linear regression for functional predictor and scalar response;Baillo;J. Multivar. Anal.,2009

3. Locally modelled regression and functional data;Ferraty;J. Nonparametric Stat.,2010

4. Local linear regression for functional data;Berlinet;Ann. Inst. Stat. Math.,2011

5. Strong uniform consistency rates of some characteristics of the conditional distribution estimator in the functional single-index model;Bouchentouf;Appl. Math.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3