Semantic-Enhanced Knowledge Graph Completion

Author:

Yuan Xu1,Chen Jiaxi1,Wang Yingbo1ORCID,Chen Anni2,Huang Yiou3,Zhao Wenhong4ORCID,Yu Shuo5

Affiliation:

1. School of Software, Dalian University of Technology, Dalian 116620, China

2. School of Computer Science, University of Wollongong, Wollongong 2522, Australia

3. School of Mathematics and Physics, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China

4. Ultraprecision Machining Center, Zhejiang University of Technology, Hangzhou 310014, China

5. School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China

Abstract

Knowledge graphs (KGs) serve as structured representations of knowledge, comprising entities and relations. KGs are inherently incomplete, sparse, and have a strong need for completion. Although many knowledge graph embedding models have been designed for knowledge graph completion, they predominantly focus on capturing observable correlations between entities. Due to the sparsity of KGs, potential semantic correlations are challenging to capture. To tackle this problem, we propose a model entitled semantic-enhanced knowledge graph completion (SE-KGC). SE-KGC effectively addresses the issue by incorporating predefined semantic patterns, enabling the capture of semantic correlations between entities and enhancing features for representation learning. To implement this approach, we employ a multi-relational graph convolution network encoder, which effectively encodes the KG. Subsequently, we utilize a scoring decoder to evaluate triplets. Experimental results demonstrate that our SE-KGC model outperforms other state-of-the-art methods in link-prediction tasks across three datasets. Specifically, compared to the baselines, SE-KGC achieved improvements of 11.7%, 1.05%, and 2.30% in terms of MRR on these three datasets. Furthermore, we present a comprehensive analysis of the contributions of different semantic patterns, and find that entities with higher connectivity play a pivotal role in effectively capturing and characterizing semantic information.

Funder

Bintuan Science and Technology Program

Fundamental Research Funds for the Central Universities

“High-level Talent Team” Project of Dalian Science and Technology Talent Innovation Support Policy Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3