Laser-Based Additive Manufacturing of Magnesium Alloys for Bone Tissue Engineering Applications: From Chemistry to Clinic

Author:

Fard Mohammad GhasemianORCID,Sharifianjazi Fariborz,Kazemi Sanam Sadat,Rostamani Hosein,Bathaei Masoud SoroushORCID

Abstract

Metallic biomedical implants are made from materials such as stainless steel, titanium, magnesium, and cobalt-based alloys. As a degradable biometal, magnesium (Mg) and its alloys are becoming more popular for applications in bone tissue engineering. Mg-based alloys have been found to be biocompatible, bioabsorbable, and bioactive, allowing them to be used as orthopedic implants with a low Young’s modulus. Computer-aided design can be used to design scaffolds with intricate porous structures based on patient-specific anatomical data. These models can be materialized rapidly and with reasonably acceptable dimensional accuracy by additive manufacturing (AM) techniques. It is known that lasers are the most widely investigated energy source for AM’ed Mg, as they offer some distinct advantages over other forms of energy. Recent studies have focused on developing biodegradable Mg scaffolds by using laser-based AM techniques. In this paper, we aim to review the recent progress of laser-based AM for Mg alloys and survey challenges in the research and future development of AM’ed Mg scaffolds for clinical applications.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3