Optimization of Wire-EDM Process Parameters for Al-Mg-0.6Si-0.35Fe/15%RHA/5%Cu Hybrid Metal Matrix Composite Using TOPSIS: Processing and Characterizations

Author:

Kumar JatinderORCID,Sharma ShubhamORCID,Singh Jujhar,Singh SunpreetORCID,Singh GurminderORCID

Abstract

The current experimental study concerns obtaining the optimal set of wire-EDM processing factors for a novel Al-Mg-0.6Si-0.35Fe/15%RHA/5%Cu hybrid aluminum matrix composite. The composite exhibits hardness of 64.2 HRB, tensile strength 104.6 MPa, impact energy 4.8 joules, when tested using standard testing techniques. For this, composite is formulated with the help of a stir casting route. The tests are conducted as per Taguchi’s L27 OA, to explore the influence of processing factors on the surface roughness (Ra), radial overcut (ROC) and material removal rate (MRR). The optimization is executed using the Taguchi approach, followed by multiple objective optimizations with TOPSIS (one of the MADM techniques). For optimal values of Ra, MRR and ROC, the optimum set of input variables is suggested as 150 A of current, 125 μs of pulse duration, 50 μs of pulse interval and 8 mm/min of wire feed-rate. Predicted performance index value was calculated and was compared with the experiment value. It has been observed that both values are very close to each other with only 1.33% error, which means the results are validated. ANOVA confirms that current is a predominant factor influencing response characteristic parameters, which contributes 24.09%, followed by pulse duration (16.78%) and pulse interval (15.18%). The surface characterization using a scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive spectroscope (EDS) and optical microscope (OM) has also been carried out to affirm the existence of the reinforcing particles in the base matrix.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3