Using Time Series Optical and SAR Data to Assess the Impact of Historical Wetland Change on Current Wetland in Zhenlai County, Jilin Province, China

Author:

Shi SixueORCID,Chang Yu,Li Yuehui,Hu Yuanman,Liu MiaoORCID,Ma JunORCID,Xiong Zaiping,Wen DingORCID,Li Binglun,Zhang Tingshuang

Abstract

Wetlands, as the most essential ecosystem, are degraded throughout the world. Wetlands in Zhenlai county, with the Momoge National Nature Reserve, which was included on the Ramsar list, have degraded by nearly 30%. Wetland degradation is a long-term continuous process with annual or interannual changes in water area, water level, or vegetation presence and growth. Therefore, it requires sufficiently frequent and high-spatial-resolution data to represent its dynamics. This study mapped yearly land-use maps with 30-m resolution from 1985 to 2018 using Landsat data in Google Earth Engine (GEE) to explore the wetland degradation process and mapped 12-day interval land-use maps with 15-m resolution using the Sentinel-1B and Sentinel-2 data in GEE and other assistant platforms to study the characteristics of wetland dynamics in 2018. Four sets of maps were generated using Sentinel-1B (S1), Sentinel-2 (S2), the combination of Sentinel-1B and Sentinel-2 (S12), and S12 with multitemporal remote sensing (S12’). All of the classifications were performed in the Random Forest Classification (RFC) method using remote sensing indicators. The results indicate that S12’ was the most accurate. Then, the impact of the historic land-use degradation process on current wetland change dynamics was discussed. Stable, degradation, and restoration periods were identified according to the annual changes in wetlands. The degraded, stable, restored, and vulnerable zones were assessed based on the transformation characteristics among wetlands and other land-use types. The impact of historical land-use trajectories on wetland change characteristics nowadays is diverse in land-use types and distributions, and the ecological environment quality is the comprehensive result of the effect of historical land-use trajectories and the amount of rainfall and receding water from paddy fields. This study offers a new method to map high-spatiotemporal-resolution land-use (S12’) and addresses the relationship between historic wetland change characteristics and its status quo. The findings are also applicable to wetland research in other regions. This study could provide more detailed scientific guidance for wetland managers by quickly detecting wetland changes at a finer spatiotemporal resolution.

Funder

the National Key Research and Development Project of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3