Abstract
Land surface temperature (LST) is one of the most valuable variables for applications relating to hydrological processes, drought monitoring and climate change. LST from satellite data provides consistent estimates over large scales but is only available for cloud-free pixels, greatly limiting applications over frequently cloud-covered regions. With this study, we propose a method for estimating all-weather 1 km LST by combining passive microwave and thermal infrared data. The product is based on clear-sky LST retrieved from Moderate-resolution Imaging Spectroradiometer (MODIS) thermal infrared measurements complemented by LST estimated from the Advanced Microwave Scanning Radiometer Version 2 (AMSR2) brightness temperature to fill gaps caused by clouds. Terrain, vegetation conditions, and AMSR2 multiband information were selected as the auxiliary variables. The random forest algorithm was used to establish the non-linear relationship between the auxiliary variables and LST over the Tibetan Plateau. To assess the error of this method, we performed a validation experiment using clear-sky MODIS LST and in situ measurements. The estimated all-weather LST approximated MODIS LST with an acceptable error, with a coefficient of correlation (r) between 0.87 and 0.99 and a root mean square error (RMSE) between 2.24 K and 5.35 K during the day. At night-time, r was between 0.89 and 0.99 and the RMSE was between 1.02 K and 3.39 K. The error between the estimated LST and in situ LST was also found to be acceptable, with the RMSE for cloudy pixels between 5.15 K and 6.99 K. This method reveals a significant potential to derive all-weather 1 km LST using AMSR2 and MODIS data at a regional and global scale, which will be explored in the future.
Funder
the Guangdong Basic and Applied Basic Research Foundation
Subject
General Earth and Planetary Sciences
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献