Improving the Accuracy of Land Cover Mapping by Distributing Training Samples

Author:

Li ChenxiORCID,Ma Zaiying,Wang Liuyue,Yu Weijian,Tan Donglin,Gao Bingbo,Feng Quanlong,Guo Hao,Zhao Yuanyuan

Abstract

High-quality training samples are essential for accurate land cover classification. Due to the difficulties in collecting a large number of training samples, it is of great significance to collect a high-quality sample dataset with a limited sample size but effective sample distribution. In this paper, we proposed an object-oriented sampling approach by segmenting image blocks expanded from systematically distributed seeds (object-oriented sampling approach) and carried out a rigorous comparison of seven sampling strategies, including random sampling, systematic sampling, stratified sampling (stratified sampling with the strata of land cover classes based on classification product, Latin hypercube sampling, and spatial Latin hypercube sampling), object-oriented sampling, and manual sampling, to explore the impact of training sample distribution on the accuracy of land cover classification when the samples are limited. Five study areas from different climate zones were selected along the China–Mongolia border. Our research identified the proposed object-oriented sampling approach as the first-choice sampling strategy in collecting training samples. This approach improved the diversity and completeness of the training sample set. Stratified sampling with strata defined by the combination of different attributes and stratified sampling with the strata of land cover classes had their limitations, and they performed well in specific situations when we have enough prior knowledge or high-accuracy product. Manual sampling was greatly influenced by the experience of interpreters. All these sampling strategies mentioned above outperformed random sampling and systematic sampling in this study. The results indicate that the sampling strategies of training datasets do have great impacts on the land cover classification accuracies when the sample size is limited. This paper will provide guidance for efficient training sample collection to increase classification accuracies.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3