Phenology and Spectral Unmixing-Based Invasive Kudzu Mapping: A Case Study in Knox County, Tennessee

Author:

Shen MingORCID,Tang Maofeng,Li YingkuiORCID

Abstract

As an invasive plant species, kudzu has been spreading rapidly in the Southeastern United States in recent years. Accurate mapping of kudzu is critical for effective invasion control and management. However, the remote detection of kudzu distribution using multispectral images is challenging because of the mixed reflectance and potential misclassification with other vegetation. We propose a three-step classification process to map kudzu in Knox County, Tennessee, using multispectral Sentinel-2 images and the integration of spectral unmixing analysis and phenological characteristics. This classification includes an initial linear unmixing process to produce an overestimated kudzu map, a phenological-based masking to reduce misclassification, and a nonlinear unmixing process to refine the classification. The initial linear unmixing provides high producer’s accuracy (PA) but low user’s accuracy (UA) due to misclassification with grasslands. The phenological-based masking increases the accuracy of the kudzu classification and reduces the domain for further processing. The nonlinear unmixing further refines the kudzu classification via the selection of an appropriate nonlinear model. The final kudzu classification for Knox County reaches relatively high accuracy, with UA, PA, Jaccard, and Kappa index values of 0.858, 0.907, 0.789, and 0.725, respectively. Our proposed method has potential for continuous monitoring of kudzu in large areas.

Funder

University of Tennessee at Knoxville

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3