Spatial Downscaling of MODIS Snow Cover Observations Using Sentinel-2 Snow Products

Author:

Revuelto JesúsORCID,Alonso-González Esteban,Gascoin SimonORCID,Rodríguez-López Guillermo,López-Moreno Juan IgnacioORCID

Abstract

Understanding those processes in which snow dynamics has a significant influence requires long-term and high spatio-temporal resolution observations. While new optical space-borne sensors overcome many previous snow cover monitoring limitations, their short temporal length limits their application in climatological studies. This work describes and evaluates a probabilistic spatial downscaling of MODIS snow cover observations in mountain areas. The approach takes advantage of the already available high spatial resolution Sentinel-2 snow observations to obtain a snow probability occurrence, which is then used to determine the snow-covered areas inside partially snow-covered MODIS pixels. The methodology is supported by one main hypothesis: the snow distribution is strongly controlled by the topographic characteristics and this control has a high interannual persistence. Two approaches are proposed to increase the 500 m resolution MODIS snow cover observations to the 20 m grid resolution of Sentinel-2. The first of these computes the probability inside partially snow-covered MODIS pixels by determining the snow occurrence frequency for the 20 m Sentinel-2 pixels when clear-sky conditions occurred for both platforms. The second approach determines the snow probability occurrence for each Sentinel-2 pixel by computing the number of days in which snow was observed on each grid cell and then dividing it by the total number of clear-sky days per grid cell. The methodology was evaluated in three mountain areas in the Iberian Peninsula from 2015 to 2021. The 20 m resolution snow cover maps derived from the two probabilistic methods provide better results than those obtained with MODIS images downscaled to 20 m with a nearest-neighbor method in the three test sites, but the first provides superior performance. The evaluation showed that mean kappa values were at least 10% better for the two probabilistic methods, improving the scores in one of these sites by 25%. In addition, as the Sentinel-2 dataset becomes longer in time, the probabilistic approaches will become more robust, especially in areas where frequent cloud cover resulted in lower accuracy estimates.

Funder

Spanish Ministry of Economy and Competitiveness

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3