DP-MVS: Detail Preserving Multi-View Surface Reconstruction of Large-Scale Scenes

Author:

Zhou LiyangORCID,Zhang ZhuangORCID,Jiang HanqingORCID,Sun HanORCID,Bao Hujun,Zhang GuofengORCID

Abstract

This paper presents an accurate and robust dense 3D reconstruction system for detail preserving surface modeling of large-scale scenes from multi-view images, which we named DP-MVS. Our system performs high-quality large-scale dense reconstruction, which preserves geometric details for thin structures, especially for linear objects. Our framework begins with a sparse reconstruction carried out by an incremental Structure-from-Motion. Based on the reconstructed sparse map, a novel detail preserving PatchMatch approach is applied for depth estimation of each image view. The estimated depth maps of multiple views are then fused to a dense point cloud in a memory-efficient way, followed by a detail-aware surface meshing method to extract the final surface mesh of the captured scene. Experiments on ETH3D benchmark show that the proposed method outperforms other state-of-the-art methods on F1-score, with the running time more than 4 times faster. More experiments on large-scale photo collections demonstrate the effectiveness of the proposed framework for large-scale scene reconstruction in terms of accuracy, completeness, memory saving, and time efficiency.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient High-Quality Vectorized Modeling of Large-Scale Scenes;International Journal of Computer Vision;2024-05-20

2. Hierarchical mussel farm reconstruction from video with object tracking;Journal of the Royal Society of New Zealand;2024-04-25

3. Hash Encoding and Brightness Correction in 3D Industrial and Environmental Reconstruction of Tidal Flat Neural Radiation;Sensors;2024-02-23

4. Overview of image-based 3D reconstruction technology;Journal of the European Optical Society-Rapid Publications;2024

5. Hybrid-MVS: Robust Multi-View Reconstruction With Hybrid Optimization of Visual and Depth Cues;IEEE Transactions on Circuits and Systems for Video Technology;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3