Mapping Amazon Forest Productivity by Fusing GEDI Lidar Waveforms with an Individual-Based Forest Model

Author:

Bauer Luise,Knapp NikolaiORCID,Fischer RicoORCID

Abstract

The Amazon rainforest plays an important role in the global carbon cycle. However, due to its structural complexity, current estimates of its carbon dynamics are very imprecise. The aim of this study was to determine the forest productivity and carbon balance of the Amazon, particularly considering the role of canopy height complexity. Recent satellite missions have measured canopy height variability in great detail over large areas. Forest models are able to transform these measurements into carbon dynamics. For this purpose, about 110 million lidar waveforms from NASA’s GEDI mission (footprint diameters of ~25 m each) were analyzed over the entire Amazon ecoregion and then integrated into the forest model FORMIND. With this model–data fusion, we found that the total gross primary productivity (GPP) of the Amazon rainforest was 11.4 Pg C a−1 (average: 21.1 Mg C ha−1 a−1) with lowest values in the Arc of Deforestation region. For old-growth forests, the GPP varied between 15 and 45 Mg C ha−1 a−1. At the same time, we found a correlation between the canopy height complexity and GPP of old-growth forests. Forest productivity was found to be higher (between 25 and 45 Mg C ha−1 a−1) when canopy height complexity was low and lower (10–25 Mg C ha−1 a−1) when canopy height complexity was high. Furthermore, the net ecosystem exchange (NEE) of the Amazon rainforest was determined. The total carbon balance of the Amazon ecoregion was found to be −0.1 Pg C a−1, with the highest values in the Amazon Basin between both the Rio Negro and Solimões rivers. This model–data fusion reassessed the carbon uptake of the Amazon rainforest based on the latest canopy structure measurements provided by the GEDI mission in combination with a forest model and found a neutral carbon balance. This knowledge may be critical for the determination of global carbon emission limits to mitigate global warming.

Funder

German Federal Ministry for Economic Affairs and Energy

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3