Depths Inferred from Velocities Estimated by Remote Sensing: A Flow Resistance Equation-Based Approach to Mapping Multiple River Attributes at the Reach Scale

Author:

Legleiter CarlORCID,Kinzel PaulORCID

Abstract

Remote sensing of flow conditions in stream channels could facilitate hydrologic data collection, particularly in large, inaccessible rivers. Previous research has demonstrated the potential to estimate flow velocities in sediment-laden rivers via particle image velocimetry (PIV). In this study, we introduce a new framework for also obtaining bathymetric information: Depths Inferred from Velocities Estimated by Remote Sensing (DIVERS). This approach is based on a flow resistance equation and involves several assumptions: steady, uniform, one-dimensional flow and a direct proportionality between the velocity estimated at a given location and the local water depth, with no lateral transfer of mass or momentum. As an initial case study, we performed PIV and inferred depths from videos acquired from a helicopter hovering at multiple waypoints along a large river in central Alaska. The accuracy of PIV-derived velocities was assessed via comparison to field measurements and the performance of an optimization-based approach to DIVERS was quantified by comparing calculated depths to those observed in the field. We also examined the ability of two variants of DIVERS to reproduce the discharge recorded at a gaging station. This analysis indicated that the accuracy of PIV-based velocity estimates varied considerably from hover to hover along the reach, with observed vs. predicted R2 values ranging from 0.22 to 0.97 and a median of 0.57. Calculated depths were also reasonably accurate, with median normalized biases from −4% to 9.9% for the two versions of DIVERS, but tended to be under-predicted in meander bends. Discharges were reproduced to within 1% and 4% when applying the optimization-based technique to individual hovers or reach-aggregated data, respectively. The results of this investigation suggest that, in addition to the velocity field derived via PIV, DIVERS could provide a plausible, first-order approximation to the reach-scale bathymetry. This framework could be refined by incorporating hydraulic processes that were not represented in the initial iteration of the approach described herein.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3