Abstract
Lake surface water temperature (LSWT) is a crucial water quality parameter that modulates many lake and reservoir processes. Therefore, it is necessary to monitor it from a long-term perspective. Over the last decades, many methods to retrieve LSWT fields from satellite imagery have been developed. This work aims to test, implement and automate six methods. These are performed in the Google Earth Engine (GEE) platform, using 30 m spatial resolution images from Landsat 7 and 8 satellites for 2000–2020. Automated methods deliver long-term time series. Series are then calibrated with in situ data. Two-dimensional (2D) × time data fields are built on the lakes with the calibration, and a subsequent LSWT climatology is derived. Our study area is two urban lagoons with areas smaller than two (2) km2 of the city of San Pedro de la Paz, South-Central Chile. The six methods describe the seasonal variation of LSWT (Willmott’s index of agreement > 0.91, R2 > 0.67). The main difference between series is their bias. Thus, after a simple calibration, all series adequately describe the LSWT. We utilized the Pedro de la Paz lagoons to demonstrate the method’s utility. Our research demonstrates that these adjacent lagoons exhibit comparable LSWT spatial (15.5–17 ∘C) and temporal (7–25 ∘C) trends throughout the year. Differences in geographical pattern might result from the northern island’s heat impact and the existence of the Biobío river to the east. Our work represents an efficient alternative for obtaining LSWT in particular lakes and reservoirs, especially useful in medium and small-sized ones.
Subject
General Earth and Planetary Sciences
Reference66 articles.
1. A simple lumped model to convert air temperature into surface water temperature in lakes;Piccolroaz;HESS,2013
2. Caracterización y tendencias tróficas de cinco lagos costeros de Chile central;Parra;Limnetica,2003
3. Una aproximación interdisciplinaria al estudio de floraciones de algas nocivas en Lagos Urbanos En Chile;Parra,2016
4. LakeSST: Lake Skin Surface Temperature in French inland water bodies for 1999–2016 from Landsat archives
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献