Attention-Guided Siamese Fusion Network for Change Detection of Remote Sensing Images

Author:

Chen Puhua,Guo Lei,Zhang XiangrongORCID,Qin Kai,Ma Wentao,Jiao Licheng

Abstract

Change detection for remote sensing images is an indispensable procedure for many remote sensing applications, such as geological disaster assessment, environmental monitoring, and urban development monitoring. Through this technique, the difference in certain areas after some emergencies can be determined to estimate their influence. Additionally, by analyzing the sequential difference maps, the change tendency can be found to help to predict future changes, such as urban development and environmental pollution. The complex variety of changes and interferential changes caused by imaging processing, such as season, weather and sensors, are critical factors that affect the effectiveness of change detection methods. Recently, there have been many research achievements surrounding this topic, but a perfect solution to all the problems in change detection has not yet been achieved. In this paper, we mainly focus on reducing the influence of imaging processing through the deep neural network technique with limited labeled samples. The attention-guided Siamese fusion network is constructed based on one basic Siamese network for change detection. In contrast to common processing, besides high-level feature fusion, feature fusion is operated during the whole feature extraction process by using an attention information fusion module. This module can not only realize the information fusion of two feature extraction network branches, but also guide the feature learning network to focus on feature channels with high importance. Finally, extensive experiments were performed on three public datasets, which could verify the significance of information fusion and the guidance of the attention mechanism during feature learning in comparison with related methods.

Funder

National Natural Science Foundation of China under Grant

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3