Learning-Based Rate Control for High Efficiency Video Coding

Author:

Chen Sovann1,Aramvith Supavadee2ORCID,Miyanaga Yoshikazu3ORCID

Affiliation:

1. Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

2. Multimedia Data Analytics and Processing Research Unit, Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

3. Chitose Institute of Science and Technology, Chitose 066-8655, Japan

Abstract

High efficiency video coding (HEVC) has dramatically enhanced coding efficiency compared to the previous video coding standard, H.264/AVC. However, the existing rate control updates its parameters according to a fixed initialization, which can cause errors in the prediction of bit allocation to each coding tree unit (CTU) in frames. This paper proposes a learning-based mapping method between rate control parameters and video contents to achieve an accurate target bit rate and good video quality. The proposed framework contains two main structural codings, including spatial and temporal coding. We initiate an effective learning-based particle swarm optimization for spatial and temporal coding to determine the optimal parameters at the CTU level. For temporal coding at the picture level, we introduce semantic residual information into the parameter updating process to regulate the bit correctly on the actual picture. Experimental results indicate that the proposed algorithm is effective for HEVC and outperforms the state-of-the-art rate control in the HEVC reference software (HM-16.10) by 0.19 dB on average and up to 0.41 dB for low-delay P coding structure.

Funder

JICA Project for AUN/SEED-Net, Japan, Thailand Science research and Innovation Fund Chulalongkorn University

Program Management Unit for Human Resources Institutional Development, Research and Innovation

Ratchadaphiseksomphot Endowment Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference45 articles.

1. Owens, J. (2015). Television Production, CRC Press.

2. Cisco (2021, February 11). Cisco Annual Internet Report—Cisco Annual Internet Report (2018–2023) White Paper. 9 March 2020. Available online: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html.

3. Overview of the H. 264/AVC video coding standard;Wiegand;IEEE Trans. Circuits Syst. Video Technol.,2003

4. Overview of the high efficiency video coding (HEVC) standard;Sullivan;IEEE Trans. Circuits Syst. Video Technol.,2012

5. Performance and computational complexity assessment of high-efficiency video encoders;Correa;IEEE Trans. Circuits Syst. Video Technol.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3