Binocular Rivalry Impact on Macroblock-Loss Error Concealment for Stereoscopic 3D Video Transmission

Author:

Hasan Md Mehedi1ORCID,Hossain Md. Azam2ORCID,Alotaibi Naif3,Arnold John F.4,Azad AKM3ORCID

Affiliation:

1. Department of Robotics and Mechatronics Engineering, University of Dhaka, Dhaka 1000, Bangladesh

2. Department of Computer Science and Engineering, Islamic University of Technology, Gazipur 1704, Bangladesh

3. Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia

4. School of Engineering and Information Technology, University of New South Wales, Canberra 2600, Australia

Abstract

Three-dimensional video services delivered through wireless communication channels have to deal with numerous challenges due to the limitations of both the transmission channel’s bandwidth and receiving devices. Adverse channel conditions, delays, or jitters can result in bit errors and packet losses, which can alter the appearance of stereoscopic 3D (S3D) video. Due to the perception of dissimilar patterns by the two human eyes, they can not be fused into a stable composite pattern in the brain and hence try to dominate by suppressing each other. Thus, a psychovisual sensation that is called binocular rivalry occurs. As a result, undetectable changes causing irritating flickering effects are seen, leading to visual discomforts such as eye strain, headache, nausea, and weariness. This study addresses the observer’s quality of experience (QoE) by analyzing the binocular rivalry impact on the macroblock (MB) losses in a frame and its error propagation due to predictive frame encoding in stereoscopic video transmission systems. To simulate the processing of experimental videos, the Joint Test Model (JM) reference software has been used as it is recommended by the International Telecommunication Union (ITU). Existing error concealing techniques were then applied to the contiguous lost MBs for a variety of transmission impairments. In order to validate the authenticity of the simulated packet loss environment, several objective evaluations were carried out. Standard numbers of subjects were then engaged in the subjective testing of common 3D video sequences. The results were then statistically examined using a standard Student’s t-test, allowing the impact of binocular rivalry to be compared to that of a non-rivalry error condition. The major goal is to assure error-free video communication by minimizing the negative impacts of binocular rivalry and boosting the ability to efficiently integrate 3D video material to improve viewers’ overall QoE.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3