Atypical Asparagine Deamidation of NW Motif Significantly Attenuates the Biological Activities of an Antibody Drug Conjugate

Author:

Cao Mingyan1,Hussmann G. Patrick1,Tao Yeqing1,O’Connor Ellen1,Parthemore Conner1ORCID,Zhang-Hulsey Diana1,Liu Dengfeng1ORCID,Jiao Yang1,Mel Niluka de1,Prophet Meagan1,Korman Samuel1,Sonawane Jaytee1,Grigoriadou Christina1,Huang Yue2,Umlauf Scott1,Chen Xiaoyu1

Affiliation:

1. Department of Process and Analytical Sciences, Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, MD 20878, USA

2. Department of Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 121 Oyster Point Boulevard, South San Francisco, CA 94080, USA

Abstract

Asparagine deamidation is a post-translational modification (PTM) that converts asparagine residues into iso-aspartate and/or aspartate. Non-enzymatic asparagine deamidation is observed frequently during the manufacturing, processing, and/or storage of biotherapeutic proteins. Depending on the site of deamidation, this PTM can significantly impact the therapeutic’s potency, stability, and/or immunogenicity. Thus, deamidation is routinely monitored as a potential critical quality attribute. The initial evaluation of an asparagine’s potential to deamidate begins with identifying sequence liabilities, in which the n + 1 amino acid is of particular interest. NW is one motif that occurs frequently within the complementarity-determining region (CDR) of therapeutic antibodies, but according to the published literature, has a very low risk of deamidating. Here we report an unusual case of this NW motif readily deamidating within the CDR of an antibody drug conjugate (ADC), which greatly impacts the ADC’s biological activities. Furthermore, this NW motif solely deamidates into iso-aspartate, rather than the typical mixture of iso-aspartate and aspartate. Interestingly, biological activities are more severely impacted by the conversion of asparagine into iso-aspartate via deamidation than by conversion into aspartate via mutagenesis. Here, we detail the discovery of this unusual NW deamidation occurrence, characterize its impact on biological activities, and utilize structural data and modeling to explain why conversion to iso-aspartate is favored and impacts biological activities more severely.

Publisher

MDPI AG

Subject

Drug Discovery,Immunology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3